Pembangunan Sistem Pemantauan Populariti ahli Politik (SPPP)
DOI:
https://doi.org/10.64382/mjii.v4i2.87Keywords:
pembelajaran mesin, media sosial, analisis sentimen, politik, Naive BayesAbstract
Kajian ini membentangkan pembangunan Sistem Pemantauan Populariti ahli Politik (SPPP) menggunakan algoritma yang Naïve Bayes yang membolehkan pengguna memantau populariti ahli politik berdasarkan akaun peribadi di aplikasi X. Dalam kajian ini, aplikasi X digunakan sebagai sumber utama sistem ini untuk pengekstrakan data (tweet). Kuantiti tweet yang besar ini menawarkan pola atau maklumat yang berharga kepada organisasi atau individu dalam membuat keputusan yang berkesan. Matlamat kajian ini adalah untuk membangunkan sistem antara muka mesra pengguna bagi menganalisis status populariti ahli politik secara masa nyata dan seterusnya memvisualisasikan keputusan dalam bentuk grafik seperti carta bar, carta donat dan word cloud. Sistem ini menggunakan analisis sentimen dan teknik pembelajaran mesin Naïve Bayes. Teknik pengelasan Naïve Bayes digunakan untuk membina model pengelas yang boleh mengklasifikasikan tweet yang dikumpul sebagai sentimen positif, neutral dan negatif.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 How Yee Lu, Zuraini Zainol

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors of MJII retain copyright to the content of the articles.
The content is published under the Creative Commons Attribution (CC BY) 4.0 which allows content to be copied, adapted, displayed, distributed, republished, or otherwise re-used for any purpose, including for adaptation and commercial use provided the content is attributed without any restriction.
Authors Rights
The Journal grants you the following non-exclusive rights, subject to giving propoer acknowledgement to the original journal. The authors may:
(i) to reprint or reproduce the contribution, in whole or in part, in any publication of your interest.
(ii) to use material for teaching purposes; including availability of the matarial in academic course.
(iii) to post a copy of the contribution on your personal or institutional web server, provided that the server is non-commercial and there are no charges for access, and
(iv) to deposit a copy of the contribution in a non-commercial data repository maintained by an institution of which you are a member.
Author's Agreement
Author(s) guarantee the journal the following:
(i) that the contribution is their original work;
(ii) that it contains, no matter what, content that is defamatory or is otherwise unlawful or which invades rights of privacy or publicity or infringes any proprietary rights (including copyright);
(iii) that the contribution has not been published elsewhere in whole or in part and that no agreement to publish is outstanding other than this agreement. Author(s) agree to be responsible and hold the journal, its editors, staff and affiliate organizations harmless against any claims arising from or related to the breach or inaccuracy of any of the guarantees listed above.
Disclaimer
The editorial team of the MJII and the publication team of Academica Press Solutions share no responsibility regarding the views and opinions expressed by the authors.
The content published in MJII is Open Access and can be shared, adapted, reproduced, reprinted, after appropriate acknowledgment and giving due credit to the author(s) work.