Utilization of POME in Voltaic Cell Learning through the PjBL-STEM Model Oriented Toward Green Chemistry Principles
DOI:
https://doi.org/10.64382/cnff4n53Keywords:
Palm Oil Mill Effluent (POME), Voltaic Cell, PjBL-STEM, Green Chemistry, Sustainable Chemistry EducationAbstract
Abstract:
This research investigates the innovative utilization of Palm Oil Mill Effluent (POME) as an environmentally friendly electrolyte in voltaic cell education through the implementation of a Project-Based Learning model integrated with STEM (PjBL-STEM) and aligned with green chemistry principles. The study employed a quantitative approach with a quasi-experimental design, specifically using a one group pretest-posttest design, involving 32 12-grade students from Sekolah Indonesia Kota Kinabalu. The instructional intervention followed the PjBL-STEM framework through five systematic phases: (1) identification of environmental problems related to POME waste, (2) design of POME-based voltaic cell prototypes, (3) hands-on experimentation and data collection, (4) analysis of electrochemical performance, and (5) presentation and reflection on sustainable solutions. Results demonstrated exceptional implementation fidelity, with achievement rates ranging from 88.7% to 93.5% across all learning phases, indicating strong student engagement and effective model execution. Most notably, the intervention produced significant learning gains, as evidenced by an average N-Gain score of 0.71 (high category), with post-test results (84.0) showing dramatic improvement from pre-test scores (42.0). These improvements spanned three key domains: redox reaction concepts, application of green chemistry principles, and electrical energy conversion understanding. The study successfully integrated multiple green chemistry principles into the learning process, particularly: (1) waste prevention through POME repurposing, (2) use of renewable feedstocks, (3) safer solvent alternatives, and (4) inherently safer chemistry by eliminating hazardous reagents. Students not only mastered electrochemical concepts but also developed critical environmental awareness and problem-solving skills through this authentic, sustainability-focused learning experience. These findings substantiate that PjBL-STEM combined with green chemistry principles offers an effective, practical, and sustainable approach to chemistry education. The model successfully bridges theoretical knowledge with real-world environmental applications, while utilizing low-cost, locally available materials.
References
Adnyana, I. M. D. M., Mahendra, K. A., & Raza, S. M. (2023). The importance of green education in primary, secondary and higher education: A review. Journal of Environment and Sustainability Education, 1(2), 42–49. https://doi.org/10.62672/joease.v1i2.14
Aliah, N., Wati, D. S., Olii, N. Y. P., & Sukemi. (2024). Literature Review: Inovasi Pembelajaran Kimia Berwawasan Lingkungan Melalui Pendekatan Green Chemistry. CHEDS: Journal of Chemistry, Education, and Science, 8(2), 250–257. https://doi.org/10.30743/cheds.v7i1.10170
Ananda, L. R., Rahmawati, Y., & Khairi, F. (2023). Critical thinking skills of chemistry students by integrating design thinking with steam-pjbl. Journal of Technology and Science Education, 13(1), 352–367. https://doi.org/10.3926/jotse.1938
Anastas, P. T., & Warner, J. C. (1998). Green Chemistry: Theory and Practice (pp. 1–131). Oxford University Press Inc.
Anastas, P. T., & Zimmerman, J. B. (2007). Design through the 12 principles of green engineering. IEEE Engineering Management Review, 35(3), 16. https://doi.org/10.1109/EMR.2007.4296421
Avvisati, F., Echazarra, A., Givord, P., dan Schwabe, M. (2019). Programme for international student assessment (PISA) results from PISA 2018. In OECD Publishing. https://doi.org/10.1007/978-94-6209-497-0_69
Bybee, R. W. (2013). The Case for STEM Education_ Challenges and Opportunities-National Science Teachers Association.
Celestino, T. (2023). High School Sustainable and Green Chemistry: Historical–Epistemological and Pedagogical Considerations. Sustainable Chemistry, 4(3), 304–320. https://doi.org/10.3390/suschem4030022
Dewi, N. K., & Listyarini*, R. V. (2022). Development of Green Chemistry-Based Practicum Module for Senior High School to Promote Students’ Environmental Literacy. Jurnal Pendidikan Sains Indonesia, 10(3), 641–653. https://doi.org/10.24815/jpsi.v10i3.25163
Fraenkel, J. R., Wallen, N., & Hyun, H. H. (2023). How to Design and Evaluate Research in Education. In How to design and evaluate research in education.
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809
Hanif, N., Supiah, I., & Louise, Y. (2025). Micro-Scale Voltaic Cell Experiment Based on PjBL- STEM Using POME Waste for Sustainable Energy Education. Malaysia Journal of Invention and Innovation, 4(6), 24–30. https://doi.org/10.5281/zenodo.15789441
Inayah, S., Dasna, I. W., & Habiddin. (2022). Implementasi Green Chemistry Dalam Pembelajaran Kimia: Literatur Review 1,2Shorihatul. Hydrogen: Jurnal Kependidikan Kimia, 10(2), 224–253. http://ojs.undikma.ac.id/index.php/hydrogen/
Juntunen, M. K., & Aksela, M. K. (2014). Education for sustainable development in chemistry-challenges, possibilities and pedagogical models in Finland and elsewhere. Chemistry Education Research and Practice, 15(4), 488–500. https://doi.org/10.1039/c4rp00128a
Nurbaity. (2011). Pendekatan Green Chemistry Suatu Inovasi Dalam Pembelajaran Kimia Berwawasan Lingkungan. Jurnal Riset Pendidikan Kimia, 1(1), 13–21. https://doi.org/10.21009/jrpk.011.02
Purwanti, P., Hernani, H., & Khoerunnisa, F. (2023). Profil Literasi Sains Peserta Didik SMK pada Penerapan Pembelajaran Projek Electroplating Berbasis Green Chemistry. Orbital: Jurnal Pendidikan Kimia, 7(1), 1–10. https://doi.org/10.19109/ojpk.v7i1.16839
Putri, A. C. (2019). Pengaplikasian Prinsip-Prinsip Green Chemistry dalam Pelaksanaan Pembelajaran Kimia sebagai Pendekatan untuk Pencegahan Pencemaran Akibat Bahan-Bahan Kimia dalam Kegiatan Praktikum di Laboratorium. Journal of Creativity Student, 2(2), 67–73. https://doi.org/10.15294/jcs.v2i2.14585
Rahmawati, Y., Andanswari, F. D., Ridwan, A., Gillies, R., & Taylor, P. C. (2020). STEM Project-Based Learning in Chemistry: Opportunities and Challenges to Enhance Students ’ Chemical Literacy. International Journal of Innovation, Creativity, and Change, 13(7), 1673–1694. www.ijicc.net
Rahmawati, Y., Mardiah, A., Taylor, E., Taylor, P. C., & Ridwan, A. (2023). Chemistry Learning through Culturally Responsive Transformative Teaching (CRTT): Educating Indonesian High School Students for Cultural Sustainability. Sustainability, 15(8). https://doi.org/10.3390/su15086925
Rosita, A., Sudarmin, & Marwoto, P. (2014). Perangkat pembelajaran problem based learning berorientasi green chemistry materi hidrolisis garam untuk mengembangkan soft skill konservasi siswa. Jurnal Pendidikan IPA Indonesia, 3(2), 134–139. https://doi.org/10.15294/jpii.v3i2.3112
Sari, W. P. P., & Atun, S. (2023). Integration Green Chemistry into Learning Process. Jurnal Penelitian Pendidikan IPA, 9(10), 921–928. https://doi.org/10.29303/jppipa.v9i10.5012
Satchakett, N., & Thana, A. (2019). STEM education Project-Based Learning Activities impacting on teamwork skills and Satisfaction of grade 11 Students in Khon Kaen Wittayayon School. Journal of Physics: Conference Series, 1340(1). https://doi.org/10.1088/1742-6596/1340/1/012037
Sulochana, M., Babu, R., Thakur, S., Mahalle, P. R., Jorapur, Y., & Nakkella, A. K. (2024). Green Chemistry Innovations for Sustainable Development. African Journal of Biological Sciences, 6(9), 5525–18. https://doi.org/10.48047/AFJBS.6.9.2024.5524-5541
Summerton, L., Hurst, G. A., & Clark, J. H. (2018). Facilitating active learning within green chemistry. Current Opinion in Green and Sustainable Chemistry, 13, 56–60. https://doi.org/10.1016/j.cogsc.2018.04.002
Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, 22(1), 1–18.
Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87–102. https://doi.org/10.1007/s10798-011-9160-x
Wahyuningsih, A. S., Poedjiastoeti, S., & Suyono, S. (2017). The effect of green chemistry laboratory learning on pre-service chemistry teachers’ environmental value orientations and creative thinking skill. JPPS (Jurnal Penelitian Pendidikan Sains), 5(1), 848. https://doi.org/10.26740/jpps.v5n1.p848-858
Yuniar, S. A., Zammi, M., & Suryandari, E. T. (2019). Pengembangan Petunjuk Praktikum berbasis Green Chemistry pada Materi Stoikiometri Kelas X di SMAN 7 Semarang. Journal of Educational Chemistry (JEC), 1(2), 51. https://doi.org/10.21580/jec.2019.1.2.4235
Zuin, V. G., Eilks, I., Elschami, M., & Kümmerer, K. (2021). Education in green chemistry and in sustainable chemistry: perspectives towards sustainability. Green Chemistry.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nayudin Hanif, Endang Wijayanti LFX, Eli Rohaeti

This work is licensed under a Creative Commons Attribution 4.0 International License.